CASTIGLIANO THEOREM

ENERGY METHOD

Overview of Loads ON and IN Structures / Machines

Overview of Various Stress Patterns

Elastic Deformation for Different Types of Loadings (Stress Pattern

- Straight uniform elastic bar loaded by centered axial force (Figs. 2.1, 2.2, 2.3)
 - Similar to linear spring in elastic range

$$F = ky, \quad y = \delta_f = l_f - l_0$$

- $\text{``Force-induced elastic deformation'', } \delta_{f} \text{ must} \\ \text{not exceed ``design allowable'': } \underline{failure is} \\ \underline{\text{predicted to occur if (FIPTOI):}} \delta_{f-\text{max}} > \delta_{f-\text{allow}}$
- "Spring Constant (Rate)" for elastic bar $k(lb/in) = F/y = F/\delta_f$
- Normalize "Force-deflection" curve to obtain "Engineering <u>Stress-Strain</u> Diagram"

$$\sigma = \frac{F}{A_0}, \quad \varepsilon_f = \frac{o_f}{l_0}, \quad so that:$$

$$k_{ax} = \frac{F}{\delta_f} = \frac{A_0\sigma}{l_0\varepsilon_f} = \frac{A_0E}{l_0}, \quad where: \quad \sigma = E\varepsilon_f \; (Hooke's \; Law)$$

Engineering strain, $\epsilon_f = \delta_f / l_o$ (in/in)

Figure 2.3 Engineering stress-strain diagram for linear elastic behavior.

Elastic Deformation for Different Types of Loadings (Stress Patterns)

- Torsional moment produces torsional shearing strain, according to Hooke's Law: $\tau = G \gamma$
 - Shear strain, γ , is change in initially right angle (radians)
 - Angular deflection (twist angle) for elastic members: $\theta = \frac{TL}{KG}$, where: K = J for cylindrical members
- **Beam bending loads cause transverse deflections:**
 - Deflection (elastic) curve obtained by integrating twice the governing differential equation and using the boundary conditions: $\frac{d^2 y(x)}{dx^2} = \frac{M_z(x)}{EI_{zz}}, \text{ where "M" from bending moment diagram}$
 - See Table 4.1 for deflection curves of several common cases

Stored Strain Energy (Potential Energy of Strain)

- From <u>Work</u> done by external forces or moments over corresponding displacements
 - Recovered by gradual unloading if <u>elastic limit</u> of the material is not exceeded
 - Displacements (deformations) are LINEAR functions of external loads if <u>Hooke's Law</u> applies
 - <u>Generalized</u> forces include moments, and generalized displacements include rotations (angular displacements)
- Strain energy <u>per unit volume</u> for differential cubic element (Fig. 4.11) $U = \sigma \varepsilon = \sigma_{u} \varepsilon_{u} = \sigma \varepsilon$

$$u = \frac{U}{dxdydz} = \frac{\sigma_x \varepsilon_x}{2} + \frac{\sigma_y \varepsilon_y}{2} + \frac{\sigma_z \varepsilon_z}{2}$$

Figure 4.11

Unit cube of material subjected to mutually perpendicular forces P_x , P_y , and P_z .

Total Strain Energy Formulas for Common Stress Patterns

- Members with <u>uniform (constant) geometry</u> material properties along the longitudinal axis
 - Tension and Direct Shear

 $U_{tens} = F_{ave}\delta_f = \frac{F}{2}(\frac{F}{k_{ax}}) = \frac{F}{2}(\frac{FL}{AE}) = \frac{F^2L}{2AE}, where A is cross-sectional area$

 $- \text{Torsion}^{U_{dir-shear}} = P_{ave}\delta_s = \frac{P}{2}(\frac{P}{k_{dir-shear}}) = \frac{P}{2}(\frac{PL}{AG}) = \frac{P^2L}{2AG}, \text{ where A and L refer to the contact surface}$

$$U_{tor} = T_{ave}\theta_f = \frac{T}{2}(\frac{T}{k_{tor}}) = \frac{T}{2}(\frac{TL}{KG}) = \frac{T^2L}{2KG}$$

- Pure bending

$$\frac{Mg}{U_{bend}} = M_{ave}\delta_{yf} = \frac{M}{2}(\frac{M}{k_{bend}}) = \frac{M}{2}(\frac{ML}{EI}) = \frac{M^{2}L}{2EI}$$

- Strain energy associated with <u>transverse shearing stresses</u> is complex function of cross-section and negligible in comparison to bending strain energy (except for <u>short beams</u>)
- Integrations are required if geometry or material properties <u>vary</u> along the member (Table 4.6, where "Q" denotes generalized displacement)

TABLE 4.6 Summary of Strain Energy Equations and Deflection Equations for Use with Castigliano's Method Under Several Common Loading Conditions

Type of Load	Strain Energy Equation	Deflection Equation
Axial	$U = \int_0^L \frac{P^2}{2EA} dx$	$\delta = \int_0^L \frac{P(\partial P/\partial Q)}{EA} dx$
Bending	$U = \int_0^L \frac{M^2}{2EI} dx$	$\delta = \int_0^L \frac{M(\partial M/\partial Q)}{EI} dx$
Torsion	$U = \int_0^L \frac{T^2}{2KG} dx$	$\delta = \int_0^L \frac{T(\partial T/\partial Q)}{KG} dx$
Direct shear ¹	$U = \int_0^L \frac{P^2}{2AG} dx$	$\delta = \int_0^L \frac{P(\partial P/\partial Q)}{AG} dx$

¹Transverse shear associated with bending gives a similar but more complicated function of the particular cross-sectional shape (see Figure 4.6 and associated discussion) and is usually negligible compared to the strain energy of bending.

Castigliano's Theorem

- <u>Energy method</u> for calculating displacements in a deformed elastic body (Deflection equations Table 4.6)
 - At ANY point where an external force is applied, the <u>displacement</u> in the direction of that force is given by the partial derivative of the total strain energy with respect to that force.
 - Example of simple tension in uniform prismatic bar:

$$\frac{dU}{dF} = \frac{d}{dF} \left(\frac{F^2 L}{2EA}\right) = \frac{FL}{EA} = \delta_f$$

- If no real force is applied at the point of interest, a <u>"DUMMY"</u> force is "applied" at that point, and then set equal to zero in the expression of the corresponding derivative of the total strain energy.
- Applicable also to calculating <u>reactions</u> at the supports of statically <u>redundant</u> (undetermined) structures.
 - Set partial derivative equal to zero since there is no displacement

Summary of Example Problems

• Example 4.6 – Total strain energy in beam

- Simply supported beam loaded by concentrated load, "P" at midspan and moment "M" at left support
- Superposition of cases 1 and 4 in Table 4.1

• Example 4.7 – Beam deflections and slopes

- Determine reactions and expressions of the bending moment on both sides of mid-span (from equilibrium)
- Use deflection equations in Table 4.6 for mid-span deflection and angular displacement (slope of deflection curve) at left support
- Apply dummy moment at mid-span to calculate angular deflection (slope of deflection curve) at mid-span

M_{max}

Figure E4.7

Simply supported beam with midspan load P and moment M at the left support.

<u>Given</u>: $L_1=10$ in, $L_2=5$ in, P=1000 lb, s=1.25 in, d=1.25 in

<u>Find</u>: Use Castigliano's theorem to find deflection y_0 under load "P"

Figure P4.24

Right-angle support bracket with transverse end-load.

Summary of Textbook Problems – Problem 4.24, Castigliano's Theorem

- Select coordinate system and identify the elements of the total strain energy
 - Bending of square leg of support bracket
 - Torsion of square leg of support bracket
 - Bending of the round leg of support bracket
- Differentiate the expression of "U" with respect to load "P", to find deflection y_0
 - Stiffness properties of steel: E=30x10⁶psi, G=11.5x10⁶psi
 - Use Case 3 in Table 4.4 to find the geometric rigidity parameter, K, of the square leg, $K_1 = 0.34$
 - Substitute all numerical values to obtain: $y_0 = 0.13$ inches

Shape and Dimensions of Cross Section		Q, in ³	K, in ⁴	Location of Maximum Shearing Stress
1. Solid circular	2r	$\frac{\pi r^3}{2}$	$\frac{\pi r^4}{2}$	On entire boundary
2. Solid elliptical	2b $-2a \rightarrow \uparrow$	$\frac{\pi ab^2}{2}$	$\frac{\pi a^3 b^3}{a^2 + b^2}$	At ends of minor axis
3. Solid rectangular	$ - 2a \rightarrow $	$\frac{8a^2b^2}{3a+1.8b}$ (for $a \ge b$)	$ab^{3}\left[\frac{16}{3} - 3.36\frac{b}{a}\left(1 - \frac{b^{4}}{12a^{4}}\right)\right]$ (for $a \ge b$)	At midpoint of each longer side
4. Solid equilateral triangle	Ta ta	$\frac{a^3}{20}$	$\frac{\sqrt{3}a^4}{80}$	At midpoint of each side
 5. Any thin tube of uniform thickness t U = length of median boundary. 	Median boundary	2At	$\frac{4A^2t}{U}$	Nearly uniform throughout
A = area enclosed by median boundary.				

TABLE 4.4 Parameters for Determining Shearing Stress and Angular Deformation for Bars of Various Cross-Sectional Shape Subjected to Torsional Moments