
CASTIGLIANO THEOREM 

ENERGY METHOD 



Overview of Loads ON and IN 

Structures / Machines 

Body forces &couples

Concentrated

Distributed /

Pressures

Surface forces&couples

Applied Loads-

Forces &Moments

Flow Lines from

Applied to Reaction

Forces

FBD of Each

Component from

Forces through

Contact Surfaces

From FBD of

entire structure

Equilibrium Eqs.

(3 in 2D, 6 in 3D)

Reaction Forces

& Moments (at supports)

Resultants on

Cutting Surface

From FBD of

Part of Structure

Equilibrium Eqs.

(3 in 2D, 6 in 3D)

Shear Force &

Bending Moment

Diagrams
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Orientation of

Cutting Plane

Internal Forces

& Moments

Structural Analysis



Overview of Various Stress Patterns  

Uniform Distributions

of Stresses

Normal Stress-Straight Bars

Sigma=F/A

Direct Shear in Lap Joints

Tau =P/A

Uniaxial Tension or

Compression of

Straight Bars or

Lap Joints

Neutral Axis at

Centroid of Cross-section

The Resultant of

Bending Stresses

is the Bending Moment

in the Cross-section

Maximum at top

or bottom, and zero

at neutral axis

Linear Distribution

over from Neutral Axis

Sigma=(My)/I

(Normal Axial Stresses)

Pure Bending

of Long Beams

Transverse Shear Stresses

Result (Add-up) in

Shear Force in the

Cross-Section

Distribution from

Neutral Axis Depends on

Shape of Cross-section

Tau(y)=(V*MomentArea)/(I*Z(y))

Zero at top

and bottom edges

Maximum may not be

at neutral axis

Tau_max=(coef.)Tau_average

Bending of Asymmetric Beams:

IF Plane of Transverse Forces

passes through the SHEAR

CENTER, NO Torsion occurs

Beams Subjected

to Transverse Forces

Moment of differential

torsional stress about

 centroid results in the

internal torque in cross-section

Circular Cross-section:

Linear distribution, with

Max. at the outer edge:

Tau=(Tr)/J

Prismatic Shafts -Torsion

Leads to Warping

Membrane Analogy:

Tau_max=T/Q, Theta=(TL)/KG

Power-Torque-RPM Relations:

hp=(Tn)/63,025

kw=(Tn)/9549

Torsion of Round

or Prismatic Shafts

Stresses- from Distribution of

Internal Forces over Given

Cross-Section



Problem No.2 in Exam No.1 
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Superposition of stresses from applied loads “V” and “H” 
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Elastic Deformation for Different 

Types of Loadings (Stress Patterns) 

• Straight uniform elastic bar loaded by 

centered axial force (Figs. 2.1, 2.2, 2.3) 

– Similar to linear spring in elastic range 

 

– “Force-induced elastic deformation”, f must 

not exceed “design allowable”: failure is 

predicted to occur if (FIPTOI): f-max>f-allow  

– “Spring Constant (Rate)” for elastic bar 

 

– Normalize “Force-deflection” curve to obtain 

“Engineering Stress-Strain Diagram”  
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Elastic Deformation for Different 

Types of Loadings (Stress Patterns) 

• Torsional moment produces torsional shearing strain, 
according to Hooke’s Law:  = G  

– Shear strain, , is change in initially right angle (radians) 

– Angular deflection (twist angle) for elastic members: 

 

 

• Beam bending loads cause transverse deflections: 

– Deflection (elastic) curve obtained by integrating twice the 
governing differential equation and using the boundary conditions: 

 

 

– See Table 4.1 for deflection curves of several common cases 
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Stored Strain Energy (Potential 

Energy of Strain) 

• From Work done by external forces or moments 
over corresponding displacements 

– Recovered by gradual unloading if elastic limit of the material 
is not exceeded 

– Displacements (deformations) are LINEAR functions of 
external loads if Hooke’s Law applies  

– Generalized forces include moments, and generalized 
displacements include rotations (angular displacements) 

• Strain energy per unit volume for differential cubic 
element (Fig. 4.11)  
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Total Strain Energy Formulas for 

Common Stress Patterns 

• Members with uniform (constant) geometry material 
properties along the longitudinal axis 

– Tension and Direct Shear 

 

 

– Torsion 

 

– Pure bending 

 

– Strain energy associated with transverse shearing stresses is 
complex function of cross-section and negligible in comparison to 
bending strain energy (except for short beams) 

• Integrations are required if geometry or material 
properties vary along the member (Table 4.6, where “Q” 
denotes generalized displacement) 
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Castigliano’s Theorem 

• Energy method for calculating displacements in a 
deformed elastic body (Deflection equations - Table 4.6) 

– At ANY point where an external force is applied, the displacement 
in the direction of that force is given by the partial derivative of the 
total strain energy with respect to that force. 

– Example of simple tension in uniform prismatic bar: 

 

 

– If no real force is applied at the point of interest, a “DUMMY” 
force is “applied” at that point, and then set equal to zero in the 
expression of the corresponding derivative of the total strain 
energy.  

• Applicable also to calculating reactions at the supports 
of statically redundant (undetermined) structures. 

– Set partial derivative equal to zero since there is no displacement 
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Summary of Example Problems 

• Example 4.6 – Total strain energy in beam 

– Simply supported beam loaded by concentrated load, “P” at mid-
span and moment “M” at left support 

– Superposition of cases 1 and 4 in Table 4.1   

• Example 4.7 – Beam deflections and slopes 

– Determine reactions and expressions of the bending moment on 
both sides of mid-span (from equilibrium) 

– Use deflection equations in Table 4.6 for mid-span deflection and 
angular displacement (slope of deflection curve) at left support 

– Apply dummy moment at mid-span to calculate angular deflection 
(slope of deflection curve) at mid-span 







Given: L1=10 in, L2=5 in, P=1000 lb, s=1.25 in, d=1.25 in 

Find:  Use Castigliano’s theorem to find deflection y0 under load “P” 



Summary of Textbook Problems – 

Problem 4.24, Castigliano’s Theorem 

• Select coordinate system and identify the elements of 
the total strain energy 

– Bending of square leg of support bracket 

– Torsion of square leg of support bracket 

– Bending of the round leg of support bracket 

• Differentiate the expression of “U” with respect to 
load “P”, to find deflection y0 

– Stiffness properties of steel: E=30x106psi, G=11.5x106psi 

– Use Case 3 in Table 4.4 to find the geometric rigidity 
parameter, K, of the square leg, K1= 0.34 

– Substitute all numerical values to obtain: y0 = 0.13 inches 




